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Abstract

A Laser Vibrations Sensor (LVS) can be used to determine the vibrational

spectrum of targets, such as vehicles, using heterodyne laser Doppler velocimetry.

The vibrational spectra of vehicles are known to have characteristic resonances due

to the motors, gears and other moving parts. Each particular class of vehicle has

a unique vibrational spectrum. This research shows of how a body vibrating in

higher order modes has the opportunity to eliminate spectral content of the target’s

vibrational spectrum while using an LVS to perform spectrum estimation. This is due

to roughly equal amounts of laser photons with equal and opposite information about

the target’s velocity returning from the body under investigation. This is especially

so when observing targets at large distances, and the laser spot size has increased

to encapsulate higher order modes that are vibrating with frequencies that are used

for identification purposes. The research also contains preliminary investigations

into the mitigation of these effects by use of laser scanning, laser pattern intensity

changes and advanced signal processing techniques.

xvi
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EFFECT OF MULTI-MODE VIBRATION ON SIGNATURE

ESTIMATION USING A LASER VIBRATIONS SENSOR

I. Introduction

Vibrational signature is a powerful target discriminator capable of providing positive

identification of targets such as ships, aircraft and land vehicles. A Laser Vibrations

Sensor (LVS) , also commonly known as a laser vibrometer, can be used to remotely

obtain vibrational signatures. Vibration sensing via LVS is based on the modulation

of incident radar laser beam by mechanical displacements associated with machine

vibrations [15].

There are a number of anomalies that are observed in the field when trying to

identify targets using an LVS. It is postulated that one of these anomalies is caused

by multi-modal vibrations.

While operating an LVS over large distances, the spot size1 of the laser in-

creases so that it illuminates a large section of the target. The illuminated area thus

encapsulates many nodes and anti-nodes on the target. These nodes and anti-nodes

may belong to modes that are vibrating at frequencies used in the identification of

the target2. This thesis examines if the multi-mode vibrations on the target can

affect the signature estimation process.

1.1 Research Motivation

Knowing the effects of multi-mode vibrations on the signature estimation pro-

cess will potentially provide insight into methods of how to improve target iden-

1Diameter of the laser beam
2See section 2.4 for a description of modes, nodes and anti-nodes

1-1
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tification and accuracy. This has openings in many areas of defence, as well as

commercially. In the battle field, this has applications in the reduction of friendly

fire, as well as improved adversary identification. In the commercial world, the LVS

is used in a number of areas including but not limited to:

1. Damage detection of both micro (e.g. Micro Electro Mechanical System (MEMs)

devices) and macro (e.g. bridges and buildings) structures [5].

2. Medical applications[22].

3. Mode shape prediction[28].

1.2 Research Goals

1. Determine if multi-mode vibrations can eliminate spectral line content from

the vibrational spectrum of a target when using an LVS.

2. Perform preliminary investigations into methods of mitigating any negative ef-

fects caused by multi-mode vibrations during the spectrum estimation process.

1.3 Thesis Organization

Chapter I introduces the problem that is to be examined. Chapter II pro-

vides the background material required to give the reader an understanding of the

work covered. A literature review covering related topics is also presented. Chap-

ter III describes the experiment conducted to achieve the first goal as outlined in

Section 1.2. The results that were obtained are reported and analyzed in Chapter

IV. Based on the results obtained, Chapter V provides preliminary research into

methods that could be investigated further to mitigate the effects of multi-mode

vibrations. Chapter VI restates the thesis goal, summarizes research findings and

offers recommendations for future research.

1-2
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II. Background

2.1 Introduction

This chapter introduces background theory. No literature was found specifi-

cally on the effects of multi-mode vibrations on vibration sensing. However, current

literature relevant to the experiment conducted and the equipment used is also in-

troduced.

2.2 Target Discrimination Using Laser Vibration Sensing

The vibrational spectra of the exterior skin of vehicles are known to have

characteristic resonances due to the physical structure excited by the resonances of

the motors, gears and other moving parts. A particular class of vehicle may have a

unique vibrational spectrum that can be exploited for Non-Cooperative Identification

(NCID) purposes [15].

Target vibrational spectrum estimation via laser vibration sensing has been

shown to be a powerful method of classifying targets. There are numerous papers of

theoretical and practical results demonstrating the ability of laser vibration sensing

to discriminate between targets. For example, [17] shows how vibration sensing can

be used to identify helicopters and [1] uses vibration sensing to discriminate between

different motor vehicles.

2.3 Laser Vibration Sensor (LVS) Theory

The Laser Vibration Sensor used for this thesis is a Polytech OFV-3001 as

described in [23]. A description of LVS basics can be found in [24]. LVS theory is

summarized here for ease of accessibility.

The LVS is based on the Doppler effect. There are numerous texts describing

the workings of laser Doppler radar including [23].
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A laser of frequency, fo, is focused onto the object under investigation. The fre-

quency, fmod, of the light scattered back is determined by the object’s instantaneous

velocity. The difference between these two frequencies is the Doppler frequency, fD.

To determine the difference in frequencies, a Michelson-type arrangement as

shown in Figure 2.1 is used. In this set-up, the laser-beam is sent through a beam

splitter, whereby part of the signal is directed to a reference mirror, and the other to

the target. Upon reflection from the target, the signal interferes with the reference

signal producing a beat frequency which can be measured at the photodetector

by calculating the rate of change of interference fringes. Further information on

interference can be found in [11].

Once fD is determined, the instantaneous velocity can be determined by the

well known Doppler equation[24]:

fD =
2v

λ
(2.1)

where v is the instantaneous velocity of the object under investigation, and λ is the

wavelength of the laser used.

Figure 2.1. Michleson arrangement used to measure vibrations [24].

The photodetector thus outputs a voltage signal that is proportional to the

velocity of the target. The voltage signal can then be analyzed for frequency content.
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2.4 Multi-Mode Vibration

Each mode of vibration has a fixed number of nodes about which a body will

vibrate. Anode is a point on the body that does not move relative to the frequency

in question[25]. For example in Figure 2.2 (a), a piece of string fixed at both ends is

vibrating at the fundamental mode which has no nodes. In the Figure 2.2 (b), the

string is vibrating at mode 2, which has one node located at the center.

(a)First or fundamental mode of vibration. (b) First overtone or harmonic.

Figure 2.2. String displaying two different modes of vibration.

An excited body is likely to vibrate with a number of modes. The method

of excitation, including location and frequency content, will determine which modes

are excited. For example, if a taut string is plucked at the center and then released,

mode 2 will not be excited as this has a node at this position[25]. In experiments

conducted in [9] where membrane vibrations are studied, the location of excitation

is shown to have an impact on the different modes that are excited.

In order to observe the effects of multiple modes of vibration on LVS signature

estimation, the target has to be excited to vibrate in multiple modes. The fun-

damental modes of a body can be stimulated by exciting the body with a tailored

appropriate signal, such as a random signal. There are a number of methods to excite

a target such as using shakers, impulse hammers and piezoelectric materials. When

exciting the body with a random signal, the magnitudes of resonant frequencies will
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rise sharply above all other excitation frequencies [13:365-369]. Further examples of

different vibrational modes for circular membranes fixed at the rim can be found in

Appendix A.

2.5 Modal Analysis

Modal analysis is a method of determining the natural modes of vibration of

a structure. There are a number of analytical and experimental techniques that can

be employed to determine mode shapes. Finite element analysis, for example, is a

popular analytical technique and numerous examples of its use can be found in texts

such as [19]. Most of the analytical methods found in texts are complex and require

a significant amount of understanding of vibrational physics before they can be

employed. Experimentally, Scanning Laser Doppler Vibrometry is a well-established

and efficient means of analyzing vibrational behavior of a structure [8].

2.6 Target Selection Considerations

2.6.1 Temperature Fluctuations. Experimental trials in the laboratory

showed that some of the targets under consideration were susceptible to temperature

fluctuation. When a heat gun was used to flow hot air over a clamped-edge brass

target with a radius of 5.08 cm and a thickness of 0.0127 cm, the resonant frequencies

were observed to shift by up to 15 Hz. Thicker targets were tested and found

to be more resistant to frequency shift due to temperature. It can therefore be

concluded that, thicker targets, which are more thermally stable, are less susceptible

to temperature fluctuations and are more likely to maintain stable resonances whilst

under investigation.

2.6.2 Complexity of Modal Structure. As shown in Appendix A, round

targets have complicated mode structures. A description of the positions of nodes

and anti-nodes requires a two dimensional co-ordinate axes. However, on a clamped-

clamped beam mounted vertically, only a one dimensional co-ordinate axis is needed
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to describe and locate numerous vertical modes. Therefore, to simplify the experi-

ments, a clamped-clamped beam as opposed to a round target is used.

2.6.3 Clamped-Free versus Clamped-Clamped Beam. It is assumed that

a clamped-free beam will allow for larger displacements from the relaxed position

of the beam than would a clamped-clamped beam. This has potential to bias the

results recorded with the LVS as explained below.

Consider a point on a bar ‘X’. As Figure 2.3 (a) shows, point ‘X’ can be

displaced horizontally due to vibrational motion of the beam. There are certain

points along the journey of ‘X’ at which the laser beam does not “see” the point ‘X’.

If ‘X’ happens to be a point of interest (e.g. a node of a different frequency) and

with the high sampling frequencies sometimes used by the LVS, the node could easily

be missed (e.g., if a sample is taken when the mode shape is in the the horizontal

position).

(a)Fixed-Free beam. (b) Fixed-Fixed beam.

Figure 2.3. Horizontal displacement of points on a clamped-free beam are larger
than on a clamped-clamped beam. This can lead to errors. For exam-
ple in (a), if a sample is taken when the clamped-free beam is in the
horizontal position then the point ‘X’ may not be seen by the laser.

2.6.4 Surface Treatment. When the beam is expanded, the signal-to-noise

ratio falls due to the resulting drop in intensity. Experiments have shown that the
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use of different coatings on targets can result in “substantial reductions” of laser

noise due to the relative magnitude of back reflected light to the LVS [30].

2.7 Signal and Waveform Analysis

The construction and characterization of power spectral densities (PSD) of

vibrational signatures is fundamental to this thesis. A PSD is based on the Fourier

transform of a measured time signal such as a voltage signal that contains frequency

components, and it indicates how much power there is in each of the frequency

components across the observed frequency domain of the given signal. There are

many text books that provide insight into the construction of PSD’s including [21],

[27] and [16]. The method of construction of PSD’s can have an effect on the ability of

the PSD to effectively estimate the spectral content of a signal. For example, [21:147]

indicates how preprocessing the signal with a window can be used to improve the

resultant spectral line shape when the PSD is calculated. Increasing the length of

the signal (which is not always possible) also improves the spectral line shape making

it easier to identify frequency content of the signal. These considerations are taken

into account when constructing the PSD’s shown in Chapter IV.

2.8 Laser Beam Propagation

As indicated in Chapter I, it is necessary to investigate LVS’s that are operating

at large distances with respect to the target. The diffraction-limited spot size of a

laser propagating in the direction, z, can be asymptotically described by [32:70]:

w(z >> z0) =
λ0z

πnw0

(2.2)

where
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w(z) = spot size of laser beam

λ0 = wavelength of laser used

z = propagation distance from source

n = index of refraction of transmission medium

wO = beam waist

z0 = Rayleigh range

From Equation 2.2, it is seen that the further away the target is from the laser source,

the larger the spot size.

Drain’s theoretical discussion of laser interferometry for surface vibration mea-

surement [6] states that, in order to obtain the best Doppler signals, the illuminating

measuring spot must be as small as possible so that coherence is maintained over a

larger detector aperture. Bearing this in mind, it can be concluded that the optimum

signal-to-noise ratio is achieved when the laser is focused on the target. However, in

order to simulate a laser beam that has travelled a long distance in the laboratory,

the spot size of the laser must be increased. In order to maintain coherence with an

increased spot size, a beam expander such as is shown in Figure 2.4 can be utilized.

Figure 2.4. Beam Expander - An expanded beam with collimation maintained.
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A collimation tester such as the one displayed in Figure B.3 can be used to

ensure that the beam exiting the beam expander is collimated.
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III. Experiment

3.1 Introduction

In order to investigate the first research goal as described in Section 1.2, some

experiments are conducted. This section describes the aim of these experiments. A

description of the equipment and settings used, as well as a theoretical and practical

modal analysis of the target is, presented. The method used to conduct both a

practical experiment and an experiment using a MATLABr model is described.

3.2 Aim

The aim of these experiments is to determine if spectral line elimination can

occur due to a laser spot illuminating a surface that contains multiple velocities when

using a Laser Vibrations Sensor (LVS) to perform spectrum estimation.

3.2.1 Multi-Mode Vibration. A body undergoing multi-mode vibration

provides a surface which has multiple velocities. If this body is illuminated by a laser

that has travelled a long distance and the spot size has increased, the illuminated

area of the target may contain components that have velocities of equal and opposite

magnitude.

3.2.2 Frequency Spectrum Estimation. As indicated in Section 2.3, the LVS

outputs a voltage that is proportional to the velocity being observed by the laser

beam. As this is assumed to be a linear system, if the surface contains velocities of

equal and opposite magnitude, they should theoretically cancel each other out giving

rise to missing spectra in the measured vibrational spectrum.

3.3 Equipment Setup Description and Settings

The general setup for the experiment can be seen in Figure 3.1. The target is

a clamped-clamped beam as can be seen in Figure B.1. The LVS is positioned so
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that it points through a beam expander to the target. The LVS and beam expander

sit atop a plate, whose elevation and azimuth is controlled by a laptop. A signal

generator is used to provide the target with an excitation through the use of an

amplifier and a piezoelectric transducer. A list and description of the equipment

used to conduct the experiment is contained in Appendix B. More detail about the

equipment settings is outlined below.

Figure 3.1. General set-up of experiment.

3.3.1 Laptop Settings. The main use of the laptop is to control the position

of the directed laser energy, as well as to sample and record the output from the LVS,

which is a voltage representative of the instantaneous velocity of the target. The

recorded file format is shown in Appendix C. The sampling settings listed in Table

3.1 was used. A sampling rate of 20 KHz is high, and it allows samples to be

taken reasonably quickly. This is advantageous when many samples are to be taken.

A sampling length of 4096 samples was found to be adequate to obtain accurate
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frequency information. Averaging ten recordings per point gives aesthetic results for

plots that are to be analyzed.

Table 3.1. Sampling Settings.
Sampling Rate 20Khz
Number of Samples per Point 4096
Number of Recordings per Point for Averaging 10

3.3.2 LVS Settings. The LVS settings are listed in Table 3.2 for the sake

of repeatability of the experiments to be conducted.

Table 3.2. LVS Settings.
Output Velocity Range 5mm/S/V
Frequency Filter 5KHz
Tracking Filter Slow

3.3.3 Laser Beam. In order to obtain a reading with maximum signal-to-

noise ratio, the laser beam should be focused on the target [23]. While performing

modal analysis as outlined in Section 3.4.3, the laser beam is focused on the target.

However, in order to simulate a laser beam that has travelled a large distance and

has an enlarged spot size, the beam expander is employed in line with discussion in

Section 2.8. The beam is expanded, and a collimation tester is used to confirm that

the beam is collimated.

3.3.4 Signal Generator and Amplifier. The signal generator is set up to

output a 1-volt random signal, with frequencies ranging from 1 Hz to 5 KHz. The

amplifier is set to use 20X amplification. The output that is sent to the piezoelectric

film is thus a 20-volt 1Hz-5KHz random signal.

3.4 Clamped-Clamped Beam as a Target

A clamped-clamped beam is selected as a target to conduct the experiment.

Such a target provides easily locatable nodes and anti-nodes when undergoing ran-
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dom excitation. These nodes are vertical with respect to the horizontally placed

beam, allowing for easier location as discussed in Section 2.6.2.

3.4.1 Target Surface. Experimental results in the lab have shown that

highly reflective diffuse surface treatment leads to a stronger signal-to-noise ratio.

When the laser beam is in expanded beam mode, the signal-to-noise ratio proved to

be too small to collect meaningful results from an uncoated target. This problem

was overcome by coating the surface with a highly reflective diffuse sticker.

3.4.2 Theoretical Modal Analysis of Eigenfrequencies of Target. The eigen-

frequencies of the beam are calculated using Euler-Bernoulli beam modelling as out-

lined in [13]. This provides information on where to focus attention when using

the LVS to examine the target, as well as verification that the LVS is being used

correctly.

The beam is know to have the physical properties outlined in Table 3.3.

Table 3.3. Physical properties of beam.
Young’s Modules, E 62052815638.5 Pa
Moment of Inertia I 1.8606× 10−11 m4

Length l 0.278 m
Mass per unit length µ .1862 kg −m−1

The natural frequencies of the beam can be calculated using the following

equation [13].

ωn =
(λnl)

2

2π

√
EI

µl4
(3.1)

where
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ωn = nthnatural frequency

λnl = weighted frequency

E = Young’s Modulus

I = Moment of inertia

l = length of clamped section of beam

The first six values of λnl can be found in table 3.4 and are taken from [13:335].

Using equation 3.1, the first six eigenfrequencies are then calculated and the results

are displayed in Table 3.5.

The mode shape of a clamped-clamped beam can be described by the following

equation [13:335]:

cosh(λnx)− cos(λnx)− σn(sinh(λnx)− sin(λnx)) (3.2)

where

σn =
cosh(λnl)− cos(λnl)

sinh(λnl)− sin(λnl)

The first six mode-shapes are plotted in Figure 3.2.

Table 3.4. First six values of λnl.
λ1l 4.73004074
λ2l 7.85320462
λ3l 10.9956079
λ4l 14.1371655
λ5l 17.2787597
λ6l 20.4203522

3.4.3 Practical Modal Analysis of Eigenfrequencies of Target. It is required

that locations of nodes and anti-nodes of the different modes on the clamped-clamped

beam are know. Practically, this requires a modal analysis in order to characterize
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Table 3.5. Calculated eigenfrequencies ωn of beam.
ω1 112Hz
ω2 308Hz
ω3 605Hz
ω4 1001Hz
ω5 1495Hz
ω6 2088Hz

the clamped-clamped beam. The method selected to perform the modal analysis is

to use the focused LVS.

The clamped-clamped beam is excited with a random signal that contains

frequencies from 1Hz - 5KHz. A grid of points is then created using the computer

that controls the laser. The laser is focused onto the target and directed to move to

each of the grid points and record the surface velocities. Photographs of the laser

whilst at each point on the target were taken. These photos were averaged together

to obtain Figure 3.3.

The velocities and positional information is then imported into MATLABr.

The program in Appendix D is used to calculate the average PSD (of ten recorded

waveforms) at each of the points at which the laser was directed on the target. A

Hanning window is then used to pre-process the data. It has the effect of smoothing

the data at each end of the record, and thus sharpening the spectral window when

the Fourier transform is taken. The PSD between the measured data points is

then interpolated. Frequency bins are generated and, at each frequency bin, the

spatial frequencies are plotted. The different spatial modes can then be observed by

individually viewing the different frequency bins. This is easily converted to an avi

file that can play a “movie” displaying the different frequency bins. The advantage

of having a movie is that it allows quick eigenfrequency identification by playing the

movie and watching for changes. A sample observation of a frequency bin located

at 1469 Hz can be seen in Figure 3.4.
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Figure 3.2. Plots of the first six modes shapes with the amplitude arbitrarily nor-
malized for display purposes.

Spatial frequencies identified using this technique are displayed in Figure 3.5.

These locations can easily be scaled onto the beam to locate the spatial nodes as

shown in Figure 3.6. These frequencies are shown to match up well to the calculated

eigenfrequencies in Table 3.5. The slight discrepancies can be attributed to:

1. The clamped-clamped beam has a reflective sticker which would affect its vi-

brational properties.

2. On one end of the clamped-clamped beam, the clamp is slightly lipped. That

is the clamp on the back side does not match up vertically to the clamp on the

front side by approximately 3 cm.
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Figure 3.3. Beam showing points where LVS measured the surface velocities.

Figure 3.4. Spatial frequencies on clamped-clamped beam observed at 1469 Hz.
The darker shaded areas are indicative of nodal points and are not
moving with respect to the 1469 Hz signal.

3.5 Modeling Experiment

A model of the clamped-clamped beam was created using MATLABr. The

code is listed in Appendix E. The first six mode shapes as calculated in Section
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(a) 585 Hz (b) 996 Hz

(c)1469 Hz (d)2058 Hz

Figure 3.5. Some of the spatial frequencies identified on the randomly excited
clamped-clamped beam.

3.4.2 are programmed to vibrate with their respective eigenfrequencies on the beam.

A simulated (LVS) is then used to illuminate the clamped-clamped beam. The il-

luminating laser spot can be moved horizontally along the beam. The width of the

beam can also be varied to simulate distance from the laser source. The simulated

LVS will then calculate an output voltage proportional to the velocity of the illumi-

nated area on the beam. This model can be used to predict how the LVS will behave

when illuminating multiple velocities on a target.

3.5.1 Assumptions and Simplifications. To simplify the model, a number

of assumptions are made about an LVS system and target.
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Figure 3.6. Section of clamped-clamped beam showing points where vertical nodes
at 996 Hz and 2058 Hz have been identified.

3.5.1.1 Laser Modes. Laser beams have Gaussian intensity profiles

as is shown in [32] and can lase in a number of modes. The model simulates a laser-

beam with a Gaussian profile in the first mode. The LVS used in the experiments is

designed so that the laser contains no more than two modes as indicated in [23].

3.5.1.2 Projection of Illuminated Area. It is also assumed that the

amplitude of the clamped-clamped beam vibrations are small enough that they do

not effect the amount of signal returning to the laser.

3.5.1.3 Modeling of Target Surface. For the practical experiment, the

target is a highly reflective diffuse coating as described in Section 3.4.1. However, in

the model, the surface is modeled as a specular surface. This will allow observation

of signal washout effects in relation to the position of the laser and the shape of the

vibrational mode.
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3.6 Experimental Procedures

There are two experiments that are conducted to confirm if higher order modes

of vibration are capable of eliminating spectral content. The first one is a practical

experiment, and the second is an experiment performed with the model created using

MATLABr.

3.6.1 Practical Observation of Multi-Modal Effects. Once the locations of

nodes and anti-nodes have been identified on the target, the laser is then expanded

to simulate the effect of having travelled a long distance and diverged, resulting in an

enlarged diameter. The beam expander is set up to ensure that the output beam that

hits the target is collimated. The expanded laser beam is then used to illuminate

different areas of the characterized target, and results are collected for analysis.

Observations are made on different areas of the target to determine if there

are different effects on the frequency spectrum due to the location of the laser with

respect to the different nodes and anti-nodes present. These observations include

observing the following nodes derived from the practical nodal analysis:

1. Expanded beam over node at 2058 Hz.

2. Expanded beam over nodes at 1469 Hz and 996 Hz.

3. Expanded beam over node at 585 Hz.

3.6.2 Use of Model to Observe Multi-Modal Effects. The model is then

used to generate the true PSD of the simulated clamped-clamped beam. This is

achieved by focusing the simulated laser beam onto a section of target that is known

to have no nodes. This point is found to be 0.11 m in the x-direction (0.11 m from

the left clamped edge). Once the true PSD is known, the simulated laser beam is

used to illuminate nodes that were programmed into the simulated target. These

nodes belonged to the calculated frequencies of Table 3.5, and the laser is placed

over these nodes so that there is an equal amount of laser beam illuminating both
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sides of the node. Observations are then made. The laser beam is then moved in

small increments away from the node to see if there is any relationship between the

PSD and the position of the laser away from the node.
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IV. Results and Analysis

4.1 Introduction

In this chapter, results for both the practical experiment, and the simulated

experiment are presented and analyzed.

4.2 Experimental Results

Results of the experiments are outlined below.

4.2.1 Expanded Beam Over Node at 2058 Hz. Figure 4.1 shows the PSD

of an expanded laser beam from the LVS illuminating a node at 2058 Hz. The

expanded laser beam is directed so that the node of that frequency runs vertically

down the clamped-clamped beam through the center of the illuminated area. This

results in the area of the target containing two areas of equal and opposite phase

with respect to the 2058 Hz frequency that exists on the clamped-clamped beam.

The PSD shows that the spectral line at 2058 Hz is almost non-existent. When half

of the laser beam is blocked from reaching the target, the return signal only contains

spectral information associated with the left side of the node. This information

is no longer washed out (eliminated due to photons carrying equal magnitude and

opposite phase information) and the spectral line at 2058 Hz is seen to be strong,

with an increase of 20 dB/Hz. This can be seen in Figure 4.2.

The experiment is repeated for a number of different frequencies, and the

results are outlined below.

4.2.2 Expanded Beam Over Nodes at 1460 Hz and 996 Hz. The experiment

is repeated at nodes of 1460 Hz and 996 Hz. The same observations are seen as with

the node at 2058 Hz. In Figure 4.3, the expanded beam is centered around a node at

1460 Hz, and the PSD shows that this frequency has a small peak of approximately
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Figure 4.1. Expanded beam illuminating node at 2058 Hz and associated PSD.
Notice the near annihilation in the 2058 Hz spectral line power.

Figure 4.2. Expanded beam partially blocked illuminating only one side of node at
2058 Hz and associated PSD. Notice the strong return of the spectral
line at 2058 Hz.

-20 dB/Hz. In Figure 4.4, when the beam is blocked from illuminating one side of

the node, the spectral line increases in power by about 20 dB/Hz. The spectral line

missing at 2700 Hz in Figure 4.4 is due to the remaining illuminated area of the

beam positioned on the node at 2700 Hz.

In Figure 4.5, the spectral line at 996 Hz is not obvious. However, when half

the illuminated area is blocked, then the spectral line emerges and rises 20 dB/Hz,

as shown in Figure 4.6. Again the spectral line missing at 2700 Hz in Figure 4.6 is
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due to the remaining illuminated area of the beam sitting on a node of the 2700 Hz

mode.

Figure 4.3. Expanded beam illuminating node at 1460 Hz and associated PSD.
Notice the peak at 1460 Hz has a small magnitude in comparison to
the other eigenfrequencies of the beam.

Figure 4.4. Expanded beam partially blocked illuminating one side of node at 1460
Hz and associated PSD. Notice the strong return of power in the signal
at 1460 Hz. This is a nodal point for the 2700 Hz signal which explains
why it is it is missing from the PSD.

4.2.3 Expanded Beam Over Node at 585 Hz. Attempts to examine spectral

elimination at 585 Hz resulted in an observed signal reduction of approximately 6

dB/Hz. This can be seen in Figures 4.1 and 4.2 which also happens to be a node for
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Figure 4.5. Expanded beam illuminating node at 996 Hz and associated PSD.
Again the spectral line at 996 Hz is almost non-existent

Figure 4.6. Expanded beam partially blocked illuminating one side of node at 996
Hz and associated PSD. Notice the rise in power of the spectral line
at 996 Hz.

the 2058 Hz frequency. It is assumed that the lower frequencies are less stable in the

clamped-clamped beam causing nodes to shift slightly, thus reducing the strength of

effective spectral elimination.

4.3 Simulation with MATLABr model Experiment Results

The results using the simulator are shown in the Figures 4.7 - 4.12 below.

Figure 4.7 shows the true vibrational spectrum of the clamped-clamped beam. In
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Figure 4.7. True PSD of clamped-clamped beam showing all six eigenfrequencies
programmed into the beam.

Figure 4.8, when the simulated laser beam is used to illuminate a node that is

common to mode 2 (308 Hz), mode 4 (1001 Hz) and mode 6 (2088 Hz) of the

clamped-clamped beam, all three of the frequencies are washed out. Again in Figure

4.9 and Figure 4.10, the frequencies at 605 Hz and 1495 Hz are seen to be annihilated

when the LVS is centered around their respective nodes.

4.4 Peak PSD as LVS is Moved Away from Node

As the LVS is moved away from the washout condition, the spectral lines at

the missing frequencies rise as can be seen in Figure 4.11. This shows that there is

immediate response as soon as the laser moves off of the washout condition. The

plots of these spectral peaks are plotted in Figure 4.12 to examine if there is any

relationship between the mode shape of the target, the frequency that it is vibrating

at, and the amount of movement away from the node in relation to the amount of

signal return. As can be seen from Figure 4.12, it is found that in the first 0.009 m

there is no significant difference between the rate of signal return and the amount of

distance that the laser is moved away from the node.
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Figure 4.8. PSD of Simulated LVS illuminating node common to mode 2 (308 Hz),
mode 4 (1001 Hz) and Mode 6 (2088 Hz). Notice all three frequencies
are missing from the PSD.

4.5 Experimental Conclusions

These results show that spectral lines are susceptible to elimination due to

multi-mode vibrational effects. When the illuminated area of a target contains two

equal areas that have velocities that are in equal and opposite phase of vibration,

then signal washout of the associated vibration frequency is observed. The results

are confirmed by the simulated model of the situation.

In the practical experiment, the spectral elimination observed was based on

ten readings at a nodal point. Once a stable nodal position was found and spectral

elimination was observed, then a slight movement of the target would result in an

increase of power in the spectral line. It was found that if more slight movement was

made in the same direction, then another point where spectral elimination could

be observed would occur. This suggests that the surface properties (reflectivity

and optical roughness) play a part in the returned positional intensity, and are

therefore important in determining whether the number of photons carrying velocity

information of equal and opposite phase will cancel each other out.
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Figure 4.9. PSD of Simulated LVS laser spot centered around node at 605 Hz.

Figure 4.10. PSD of Simulated LVS laser spot centered around node at 1495 Hz.
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Figure 4.11. PSD of target as laser is moved in 0.001 m increments away from
washout condition at the node common to frequencies 605 Hz, 1001
Hz and 2088 Hz. This Figure shows the first four incremental moves.
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Figure 4.12. Peak spectral PSD for spectral lines at 608 Hz, 1001 Hz and 2088
Hz as the simulated LVS is moved away in 0.001 increments away
from washout condition. This Figure shows the first nine incremental
movements. This result is specific to the set-up used to conduct this
experiment.

The MATLABr model also shows that a very small movement away from the

washout condition results in the spectral lines returning.
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V. Mitigating Spectral Elimination

5.1 Introduction

In this chapter, preliminary efforts are made to examine methods to mitigate

the effects of spectral peak elimination during spectrum estimation via LVS. Methods

investigated are continuous scanning of target, laser blocking and signal processing

techniques. These methods are expanded on below.

5.2 Target Measurement using Continuous Scanning Techniques

“Laser Doppler Vibrometer has the particular capability of being able to mea-

sure the vibration of an object whilst the measurement point is being scanned over

the surface [29]”. It is therefore sensible to investigate if continuous scanning tech-

niques are more resistant to the spectral elimination effects observed in Chapter

IV.

5.2.1 Theory. For the experiments described in Chapter III, all measure-

ments of the velocity were taken with the target and LVS stationary with respect

to each other. If measurements were made while the laser beam was scanning the

target, then spectral elimination should theoretically be reduced, if not eliminated.

This is due to the fact that the points in time at which the spectral elimination

occur would only be observed for a fraction of the time of the scan - depending on

the scanning velocity and number of nodes crossed.

5.2.2 Experimental Scanning Laser Across Nodes. An experiment was con-

ducted to test if scanning techniques could possibly give rise to reduction in signal

washout effects. The LVS hardware-software control does not allow for collecting

data while scanning. However, the target position can manually be adjusted hor-

izontally. Adjusting the target horizontally while the laser is collecting data will
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therefore produce the same results as a laser that had the ability to scan the target

and simultaneously collect data.

For the previous experiments in Section III, the sampling rate was set at 20

KHz. For 4096 samples (which is the number of samples being taken per reading),

this would require a time of 0.205 seconds (1/20000 ∗ 4096) to acquire one record.

Therefore, in order to take advantage of the laser scanning a node, the target would

have to be adjusted within the 0.205 second sampling period. The only mechanics

available to adjust the target were by human operator (very slow reaction time and

uneven velocity). Therefore, the lowest frequency that displays significant signal

washout (996 Hz) is selected to observe the effects of scanning a node. While trying

to observe a 996 Hz signal, the sampling frequency can be dropped to a Nyquist rate

of 1980 Hz. However, 2100 Hz is selected as this will allow for better presentation

of results. At 2100 Hz, the sample time is 1.95 seconds (1/2100 ∗ 4096) which is

enough time for a human operator to quickly adjust the target once sampling has

commenced. The start and end position of the scan can be seen in Figure 5.1.

(a) (b)

Figure 5.1. Scanning across a 996 Hz node. (a) Position of laser on target at
beginning of scan and (b) position of laser on target at end of scan.

5.2.3 Results and Conclusions of Continuous Scanning Techniques. The

practical results obtained were not under ideal lab conditions as the target was
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adjusted by hand. However, in Figure 5.2, it can be seen that 996 Hz is observed.

The scanning velocity is estimated to be approximately 0.05 m− s−1.

Figure 5.2. PSD showing 996 Hz peak observed while scanning across the node.

Theoretically, a scanning technique could be used. It is known that continuous

scanning techniques have been used for modal shape analysis in a number of different

circumstances, as can be found in [29], [9], [3], [8], [2] and [4].

5.3 Laser Blocking at Source

5.3.1 Theory. Figure 5.3 shows a circular aperture and its Fourier trans-

form. The Fourier transform of an aperture shows the intensity of the Fraunhofer

diffraction pattern of a unit-amplitude plane wave that passes through the aperture

[14].

Figure 5.4 shows the same aperture half blocked. What can be noted in this

figure is that by half blocking the aperture, there develops a line of intensity (in

this case the line is horizontal owing to a vertical block). In Section 4.5, it was

noted that the reflectivity and the positional intensity of the laser on the target was
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(a) (b)

Figure 5.3. (a) Circular aperture and (b) its Fourier transform.

(a) (b)

Figure 5.4. (a)Half of a circular aperture and (b) its Fourier transform.

important in determining if spectral elimination occurs. Therefore, changing the

intensity pattern could potentially expose the “hidden” frequencies.

5.3.2 Laser Blocking Experiment. A small experiment was conducted by

placing the laser over a node at 2096 Hz. The PSD was recorded; then the laser was

half blocked at the source and the PSD recorded again. These results are shown in

Figure 5.5.
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(a) (b)

Figure 5.5. PSD showing the rise in spectral line at 2058 Hz and 996 Hz when the
intensity pattern is changed by half blocking the laser.

5.3.3 Conclusion. The method of changing the intensity pattern on the

target is shown to work experimentally. However, this method does reduce the total

intensity at the target, and hence would be more susceptible to noise.

5.4 Signal Processing Techniques Discussion

The results obtained in Section IV indicate that, even during spectral elimina-

tion, there is still a small amount of the signal remaining. That being the case, then

other signal processing methods to perform enhanced spectrum estimation can be

used to identify these spectra. Reference [7] indicates that Bayesian frequency esti-

mators dramatically outperform Fast Fourier Transform (FFT) approaches. These

methods take into account what is already known about the signal to be estimated,

and have shown superior performance, especially when the measurement time is lim-

ited as would be the case in the battle-field. The paper concludes that the Baysian

approach used to estimate a single sinusoid model yields a frequency estimate that

is accurate to approximately 1% over a short time series. This is an improvement

by nearly two orders of magnitude upon the estimate obtained from FFT.
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VI. Conclusions and Recommendations

6.1 Restatement of Research Goal

As stated in Section 1.2, the goals of this research are to:

1. Determine if multi-mode vibrations can eliminate spectral line content from

the vibrational spectrum of a target when using an LVS.

2. Perform preliminary investigations into methods of mitigating any negative ef-

fects caused by multi-mode vibrations during the spectrum estimation process.

6.2 Conclusion

The results observed are based on a continuous scanning laser. To apply these

results to a pulsed laser requires considering only the first few sampled points of the

target to be for use in calculating spectra.

6.2.1 Multi-Modal Impact on Signature Estimation. First, it has been

shown empirically in Section IV that bodies vibrating in modes higher than the

fundamental mode have the ability to eliminate spectral lines while using an LVS

to perform spectrum estimation. This is a phenomenon that requires almost precise

positioning of the laser about the node. In addition, the reflected intensity pattern

due to the diffuse surface pattern plays a role in determining the exact positions

around a node at which spectral elimination will occur. The experiment conducted

using the MATLABr model of the situation confirms the results observed in the

practical experiments.

6.2.2 Mitigation of Multi-Modal Impacts. Preliminary investigations into

mitigating the observed spectral elimination effects show that there are a variety of

methods that have potential to be utilized. The methods considered, laser scanning,
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laser blocking at source, and signal processing techniques, all show promise in their

ability to expose missing spectral lines.

6.3 Recommendations

The practicality of implementing methods to mitigate missing spectral lines

should be considered, and then methods determined to be viable should then be

investigated further.
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Appendix A. Examples of Modes of Vibration of a circular

Membrane taken from [25]

Figure A.1. The (0,1) Mode. The mode number is designated as (0,1) since there
are no nodal diameters, but one circlular node (the outside edge). A
node is a point (or line) on a structure that does not move while the
rest of the structure is vibrating. The (0,1) mode of a drum, is excited
when the drum head is struck at its center. When vibrating in this
mode the membrane acts much like a monopole source, which radiates
sound very effectively. Since it radiates sound so well when vibrating
in this manner, the membrane quickly transfers its vibrational energy
into radiated sound energy and the vibration dies away. The short
duration (fraction of a second) of the (0,1) mode means that this
mode does not contribute greatly to the musical tone quality of a
drum. In fact, when struck at the center a tympani, or other large
drum, produces a ”thump” which decays quickly and with no definite
pitch.
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Figure A.2. The next mode is the (1,1) with one nodal diameter and one circlular
node (the outside edge). The exact location of the nodal diameter de-
pends on the homogeneity of the membrane and the initial conditions
when the vibration starts. The frequency of the (1,1) mode is 1.593
times the frequency of the (0,1) mode. When vibrating in the (1,1)
mode a circular membrane acts much like a dipole source; instead of
pushing air away from the membrane like the (0,1) mode does, in the
(1,1) mode one half of the membrane pushes air up while the other
half sucks air down resulting in air being pushed back and forth from
side to side. As a result, the (1,1) mode radiates sound less effectively
than the (0,1) mode which means that it does not transfer its vibra-
tional energy into radiated sound energy as quickly as the (0,1) mode
and therfore, the (1,1) mode takes longer to decay. Because the (1,1)
mode ”rings” for a while, it contributes to the musical sound or pitch
of a drum. When a tympani, or other large drum, is struck some-
where between the center and outer edge, the sound has a definite
pitch which lingers for a several seconds.
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Figure A.3. The (0,2) mode, shown above does not have any diameter nodes, but
has two circular nodes - one at the outside edge and one at a distance
of 0.436 a (a is the radius of the circular membrane) from the outer
edge. The frequency of the (0,2) mode is 2.295 times the frequency
of the (0,1) mode. Like the (0,1) mode, the (0,2) mode is excited
when the membrane is struck at the center. The sound radiation
characteristics of the (0,2) mode are more complicated than the first
three modes – it appears to be a mix between a monopole and a
dipole. Its decay time is longer than the (0,1) mode, but shorter than
the (1,1) mode. As a result, it contributes to the ”thump” sound
when a drum is hit at the center, but does not contribute much to
the musical pitch of a drum when
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Figure A.4. The (1,2) mode has one nodal diameter and two nodal circles. The
frequency of the (1,2) mode is 2.917 times the frequency of the (0,1)
mode. As you might expect after looking at the first several modes of
the circular membrane, the (1,2) mode does not radiate sound very
effectively. It has somewhat of a quadrupole type behavior. Thus, the
(1,2) mode takes a relatively long time to decay. However, this mode
doesn’t seem to play a dominant role in the musical tone quality of a
drum.
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Appendix B. Equipment List

Clamped-clamped Beam Figure B.1

Amplifier Figure B.2

Collimator Checker Figure B.3

Onisoki FFT Analyzer and Signal Generator Figure B.4

Polytech Sensor Head OFV-353. Figure B.5

Laptop For Recording and Position Control Figure B.6

Beam Expander

Camera

Figure B.1. Clamped-clamped beam fixed at both ends with a high reflectance
diffuse coating. The clamped-clamped beam has a piezoelectric trans-
ducer used to excite it located on the back.
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Figure B.2. Amplifier.

Figure B.3. Collimation Tester.
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Figure B.4. Polytech OFV-3001 Controller(top) and Onisoki FFT Analyzer with
Signal Generator(bottom).

Figure B.5. Polytech Sensor Head OFV-353 and Beam Expander (Behind Sensor
Head). The Laser Leaves the Sensor Head, gets reflected off two
Mirrors into the Beam Expander. The Elevation and Azimuth of
Directed Laser Energy is Controlled by Motors that Control the Plate
on Which The Sensor Head and Beam Expander Sit. The Motors are
Controlled by Laptop Software.
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Figure B.6. Laptop Contains Software Developed by AFRL that Controls Both
the Position of Directed Laser Energy and Records Information in
File Format ”1011” as is Shown in Appendix C.

Figure B.7. Equipment Set Up to Take Readings.
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Appendix C. File Format 1011 - AFRL (John Schmoll)

File Format Used to record data from LVS.

Main Header

Byte Order U32

File Type U32

Total Main Header Size in bytes U32

Header string block size in bytes U32

Variable Length header string U32

Run Data

Total Block Size for this "run" I32

Block size of following (U16)block^* I32

Run Number U16

N Channels of data U16

Data Type U16

Year U16

Month U16

Day U16

Hour U16

Minute U16

Second U16

Millisecond U16

Microsecond U16

Block size of following (SGL) block I32

Velocity Range SGL
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Displacement Range SGL

Track Filter SGL

Low Pass Filter SGL

Overrange SGL

Position X SGL

Position Y SGL

Position Z SGL

Waveform data (one waveform for each active channel)

For each Waveform{

block sixe of waveform in bytes I32

Timestamp DBL

Sample Interval(1/Sample Rate) DBL

Number of samples of data

in the following Waveform

Data record I32

Waveform Data SGL

}
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Appendix D. Modal Analysis - MATLABr code

%readPolytech

%reads the polytech file (fname) from the path (temp) specified

%outputs avi file of PSD as a function of position for given freq

%

%Original Version (Mathew Dierking) AFRL - 2002

%

%Modified by N. Pepela - 12 December 2002

%Modifications added:

%Allow multiple wavelengths to be averaged

%Figures added to monitor PSD processing

%Converted to monitor Cantilever bar

%co-ordinate position of target converted to (px,py)

%2 bugs with reading in file corrected (file pointer bugs)

clear all;

pack;

fname= ’fixedcantilever15’; %filename

%directory

temp = [’C:\Student\Matlab\work\Thesis\Test Files\’,fname,’.vib’];

%Set up constants

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Nfft=1024/2;%; %*4;%changes the fft ’window’ size for averaging psd

NumberScanPoints = 525;%155; %33; %373; ;% % 33; %369% 368; %

cutFreq=5000; %5000; %1000; %650; %cutoff frequency for plot movie

No_waveforms = 10; % 10; % number of waveforms to average
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px = zeros(1);

py = zeros(1);

pz = zeros(1);

%flag to plot monitoring figures. (1 = on,0=off)

figureon = 0;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%open up file and read header information.This is for file type 1011

fid=fopen(temp);

byteorder = fread(fid,1,’uint32’);

filetype = fread(fid,1,’uint32’);

MHeaderSize = fread(fid,1,’uint32’);

HeadStringSize = fread(fid,1,’uint32’);

Header = fread(fid,HeadStringSize,’char’);

for i=1:HeadStringSize;

header(i)=sprintf(’%c’,Header(i));

end

Xavg=zeros(1,Nfft/2+1); %set up vectors to hold PSD

XX=zeros(10,Nfft/2+1);

XX=XX’;

%Set up figures to plot all the scan points on the target

%figure(1);

fig=figure(’Position’,[550 75 500 400]); %1 500 200 200

clf;

%Double buffer helps have flash free figures

set(fig,’DoubleBuffer’,’on’);
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set(gca,’xlim’,[-80 80],’ylim’,[-80 80],’NextPlot’,...

’replace’,’Visible’,’off’);

avifname=sprintf(’%s_%d.avi’,fname,Nfft);

title(’Plot of Scan Points’);

colormap(hot);

if figureon == 1 %if figures turned on then set up figures

%figure(2);

fig=figure(’Position’,[200 500 450 250]);

title(’Velocity mm/s’);

%figure(3);

fig=figure(’Position’,[1 75 500 400]);

title(’PSD of waveform’);

%figure(4);

fig=figure(’Position’,[600 600 300 100]);

%figure(5);

fig=figure(’Position’,[550 75 500 400]);

end

mov = avifile(avifname);

%initialise counter

count = 1;
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%read in the data info

for ix=1:NumberScanPoints*No_waveforms;

%read in all settings

RunBlk = fread(fid,1,’int32’);

%if (RunBlk);

BlkU16 = fread(fid,1,’int32’);

RunNo = fread(fid,1,’ushort’);

nChan = fread(fid,1,’ushort’);

DataType = fread(fid,1,’ushort’);

Year = fread(fid,1,’ushort’);

Month = fread(fid,1,’ushort’);

Day = fread(fid,1,’ushort’);

hour = fread(fid,1,’ushort’);

minute = fread(fid,1,’ushort’);

sec = fread(fid,1,’ushort’);

msec = fread(fid,1,’ushort’);

usec = fread(fid,1,’ushort’);

SGLblk = fread(fid,1,’int32’);

VelRng = fread(fid,1,’float’);

DispRng = fread(fid,1,’float’);

TrkFltr = fread(fid,1,’float’);

LPF = fread(fid,1,’float’);

SgnlLvl = fread(fid,1,’float’);

OverRng = fread(fid,1,’float’);

PosX = fread(fid,1,’float’);

PosY = fread(fid,1,’float’);

PosZ = fread(fid,1,’float’);
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%calculate position of scan point

if count == No_waveforms

b = ix/No_waveforms;

px(b)=PosX;

py(b)=PosY;

pz(b)=PosZ;

end

if figureon == 1

%plot scan point

figure(1)

plot(px,py,’+’);drawnow;

end

for count = 1:No_waveforms

%read in data record

BlkWfm = fread(fid,1,’int32’);

%BlkWfm1 = fread(fid,1,’int’);

TimeStmp = fread(fid,1,’double’);

SampleInt= fread(fid,1,’double’);

Nsamples = fread(fid,1,’int32’);

%Wavefrm is the sampled velocity input

Wavefrm = fread(fid,Nsamples,’float’);

Velocity = Wavefrm*VelRng; %scale to get velocity

%Hanning window used of length Nfft
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[Xavg,fx]=psd(Wavefrm,Nfft,1/SampleInt,Nfft,Nfft/2);

%display figures

if figureon == 1

figure(2);

plot(Velocity);

title(’velocity mm/s’);

%pause;

figure(3);

psdplot(Xavg,fx,’Hz’,’’,’PSD Plot’);

axis([0,cutFreq,-Inf,Inf]);

figure(4);

%fig=figure(’Position’,[500 500 400 100]);

plot(fx,Xavg);

end

Xwav(:,count) = Xavg;

%display average PSD

if count == No_waveforms;

matrixposn = ix/No_waveforms;

XX(:,matrixposn) = (mean(Xwav,2));

count = 0;

if figureon ==1

figure(5);

psdplot(XX(:,ix/No_waveforms)’,fx,’Hz’,’’,...

’PSD Average Plot’);
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axis([0,cutFreq,-Inf,Inf]);

end

end

count = count+1;

end;

%close file

fclose(fid);

%transpose XX back

XX=XX’;

%work out scaling factor.

gmax=max(max((XX(:,50:Nfft/2))));

%normalize max to 1

XS=XX/gmax;

%ilimit will give the position in vector XS and fx at

%which the frequency is at the cut-off frequency being examined

ilimit=cutFreq*SampleInt*Nfft+1;

if (ilimit > Nfft/2+1);

ilimit=Nfft/2+1;

end

%for i=1:Nfft/2+1;
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for i=2000:floor(ilimit); %for i=1:floor(ilimit);

if(max(max(XS(:,i)))>.00001);%i;

Ngrid=40;

[xg,yg]=meshgrid(-3.1:.01:3.1,-.3:.01:.3); %cantilever

[xg,yg,XSG]=griddata(px,py,XS(:,i),xg,yg,’cubic’);

image(flipud(XSG*150));

axis image;

temp=sprintf(’%s, nfft = %d ,...

Frequency Bin %5.1f Hz’,fname,Nfft,fx(i));

title(temp);

colorbar;

F = getframe(gcf); %grabs figure window

mov = addframe(mov,F);

%movietest(i) = F;

end;

end

mov = close(mov); %close avi
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Appendix E. Modeling of Clamped-Clamped Beam - MATLABr Code

%Simulation of LVS on a canteliver beam.

%N. Pepela - 17 December 2002.

%Version 3

%Assumptions:

%Power in each eigenfrequency is the same.

%each component along surface of illumination has equal intensity and

%contribution towards LVS velocity signal.

%No torsional mode effects.

%start positions of phase are the same.

%laser is perpendicular to beam.

%changing number of modes requires 4 changes:

%1. Update variable ’numberofmodes’ (start of program)

%2. Update displacement modes

%3. Update illuminated displacement modes

%4. Update illuminated velocity

%buttons work - but not that well. Sometimes need to press a few

%times to make work.

%can increase laser width by playing with ’laserillum’ variable

%near start of program

%Warnings produced by MATLAB have been examined and can be ignored
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%lets begin

clear all; pack;

%lets inistialise some variables

%length and position of x(the surface) illuminated by laser - keep

%this same divisions as x (change width of laser - eg [.2:.01:.9])

laserillum = [.130:.001:.140];

numberofmodes = 6; %total number of modes being modelled in beam

%time vector seconds - the divisions control the sampling freq and

%can hence affect aliasing if too low. speed of program compromised

%if too high.

t = [0:.0001:2.5];

t = t’;

Vt = 0; %initialise velocity of surface x

%yi contains the mode shapes that exist at the area the beam is

%illuminated

yi = zeros(6,length(laserillum));

%vi used to hold velocities of beam in laser illuminated area

vi = zeros(6,length(laserillum));

A = 1/numberofmodes; %Amplitude

z = ones(1,101); %vector so cantilever beam can be plotted in 3-d
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%increase nfft will decrease bias of freq estimation .... but

%will take longer to determine frequency content

%length to which output velocity signal from LVS is zero padded before

%PSD is calculated

nfft = 256;%512; %1024; %256; 512; 1024;

ts = t(2) - t(1); %calculate sampling rate based on time vector

Fs = 1/ts; %sampling frequency

modeflag = zeros(1,10);

%%%%%%%%%%%%%%%%%%%

%%Beam properties%%

%%%%%%%%%%%%%%%%%%%

length_beam = .27;

%weighted frequencies as found in chap 3 of thesis

beta_l = [4.73004074 7.85320462 10.9956079 14.1371655 17.2787597 ...

20.4203522];

beta=beta_l/length_beam;

%x is surface length of beam

x = [0:.001:length_beam];

%First six natural frequencies of beam calculated using

%Euler-Bernouli beam theory
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%first six fundamental frequencies of beam

W = [112 308 605 1001 1495 2088];

%Mode-Shape Coefficient Calculation

sigma_ff_In = (cosh(beta_l) - cos(beta_l))./...

(sinh(beta_l) - sin(beta_l))

%y contains the different mode shapes that will

%exist in beam (6 is max number of modes)

y = zeros(6,length(x));

%%%%%%%%%%%%%%%%%%%%

%%screen properties%

%%%%%%%%%%%%%%%%%%%%

%Use screensize to set up figures

get(0,’ScreenSize’); set(0,’Units’,’normalized’);

%set up some figures

%set up 2-d figure - contains the mode shapes

figure(2); clf; set(gcf,’Units’,’normalized’);

set(gcf,’Position’,[.015 .500 .300 .250]...

,’Color’,’k’); set(gca,’Position’,[0.15 0.2 0.8 0.6]);

%axis([0 1 -1 1 -1 1]);
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%voltage signal - emulates velocity signal given by LVS

figure(3); clf; set(gcf,’Units’,’normalized’);

set(gcf,’Position’, [.015 .050 .400...

.300],’Color’,’k’); set(gca,’Position’,[0.15 0.2 0.8 0.6]);

% psd of voltage (velocity output of LVS) signal

figure(4); clf; set(gcf,’Units’,’normalized’);

set(gcf,’Position’, [.5 .1 .4

.3],’Color’,’k’);

%set up 3-d animation of cantilever beam

fig = figure(1); clf; set(gcf,’Units’,’normalized’);

set(gcf,’Position’, [.3 .6 .7...

.3],’Color’,’k’); set(gca,’Position’,[0.15 0.2 0.8 0.6]);

%buttons on fig 1

uicontrol(’pos’,[20 20 60 20],’string’,’done’,...

’fontsize’,8,’callback’,’close(gcbf)’);

uicontrol(’pos’,[20 40 60 20],’string’,’left’,...

%set flag to -1 to indicate left button press

’fontsize’,8,’callback’,’set(gcbf,’’userdata’’,-1)’);

uicontrol(’pos’,[20 60 60 20],’string’,’right’...

%these buttons control laser illumination area

,’fontsize’,8,’callback’,’set(gcbf,’’userdata’’,1)’);

%this button to pause program

uicontrol(’pos’,[20 80 60 20],’string’,’Pause’,...
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’fontsize’,8,’callback’,’set(gcbf,’’userdata’’,2)’);

%set up Gaussian intensity profile of laser beam

%mean of Gaussian beam intensity profile

m = laserillum(length(laserillum)/2);

vari = 2; %variance of Gausian beam intensity profile

gau = 15*(exp(- ((10.*(laserillum-m)).^2 /(2*vari)))) / ...

(vari * sqrt(2*pi));

%%%%%%%%%%%%%%%%%%%%

% main program %%%

%%%%%%%%%%%%%%%%%%%%

while ishandle(fig)

for count = 1:length(t)

%first check if button has been pressed to update

%laser illuminated area

checkbutton = get(fig,’userdata’);

if checkbutton == -1

%shift laser illumination area left

laserillum = laserillum - .001;
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set(fig,’userdata’,0);

elseif checkbutton == 1

laserillum = laserillum +.001;

set(fig,’userdata’,0);

end

%lets do some modeling

%%%%%%%%displacement Modes%%%%%%%%%%%%%%%%%%

%enter mode shapes - max 10

%experiment

%first plot mode shapes for clamped- clamped

%mode shape using inman

%A is used to normalize according to number of

%modes present

y(1,:) = (cosh(beta(1)*x) - cos(beta(1)*x) - ...

(sigma_ff_In(1)*(sinh(beta(1)*x) - sin(beta(1)*x))))...

* cos(2*pi*W(1)*t(count));

y(2,:) = (cosh(beta(2)*x) - cos(beta(2)*x) - ...

(sigma_ff_In(2)*(sinh(beta(2)*x) - sin(beta(2)*x))))...

* cos(2*pi*W(2)*t(count));

y(3,:) = (cosh(beta(3)*x) - cos(beta(3)*x) - ...

(sigma_ff_In(3)*(sinh(beta(3)*x) - sin(beta(3)*x))))...

* cos(2*pi*W(3)*t(count));

y(4,:) = (cosh(beta(4)*x) - cos(beta(4)*x) - ...
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(sigma_ff_In(4)*(sinh(beta(4)*x) - sin(beta(4)*x))))...

* cos(2*pi*W(4)*t(count));

y(5,:) = (cosh(beta(5)*x) - cos(beta(5)*x) - ...

(sigma_ff_In(5)*(sinh(beta(5)*x) - sin(beta(5)*x))))...

* cos(2*pi*W(5)*t(count));

y(6,:) = (cosh(beta(6)*x) - cos(beta(6)*x) - ...

(sigma_ff_In(6)*(sinh(beta(6)*x) - sin(beta(6)*x))))...

* cos(2*pi*W(6)*t(count));

%normalize to 1 by dividing by gmax, and normalize

%depending on # of modes by mult by A

if count == 1

for i = 1:6

gmax(i) = max(abs(y(i,:)));

end

end

for i = 1:6

if gmax(i) > 0

y(i,:) = y(i,:)*A/gmax(i);

end

end

%calculate sum of all modes

yt = sum(y);
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%%%%%%%Illuminated displacement Modes%%%%%%%

%calculate the instantaneous displacement due at the

%illuminated area.

yi(1,:) = (cosh(beta(1)*laserillum) - cos(beta(1)*...

laserillum) - (sigma_ff_In(1)*(sinh(beta(1)*laserillum)...

- sin(beta(1)*laserillum)))) * cos(2*pi*W(1)*t(count));

yi(2,:) = (cosh(beta(2)*laserillum) - cos(beta(2)*...

laserillum) - (sigma_ff_In(2)*(sinh(beta(2)*laserillum)...

- sin(beta(2)*laserillum)))) * cos(2*pi*W(2)*t(count));

yi(3,:) = (cosh(beta(3)*laserillum) - cos(beta(3)*...

laserillum) - (sigma_ff_In(3)*(sinh(beta(3)*laserillum)...

- sin(beta(3)*laserillum)))) * cos(2*pi*W(3)*t(count));

yi(4,:) = (cosh(beta(4)*laserillum) - cos(beta(4)*...

laserillum) - (sigma_ff_In(4)*(sinh(beta(4)*laserillum)...

- sin(beta(4)*laserillum)))) * cos(2*pi*W(4)*t(count));

yi(5,:) = (cosh(beta(5)*laserillum) - cos(beta(5)*...

laserillum) - (sigma_ff_In(5)*(sinh(beta(5)*laserillum)...

- sin(beta(5)*laserillum)))) * cos(2*pi*W(5)*t(count));

yi(6,:) = (cosh(beta(6)*laserillum) - cos(beta(6)*...

laserillum) - (sigma_ff_In(6)*(sinh(beta(6)*laserillum)...

- sin(beta(6)*laserillum)))) * cos(2*pi*W(6)*t(count));

%normalize to 1 by dividing by gmax, and normalize depending

%on # of modes by mult by A

for i = 1:6
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if gmax(i) > 0

yi(i,:) = yi(i,:)*A/gmax(i);

end

end

%sum of all displacements

yti = sum(yi);

%%%%%%%%Illuminated velocity%%%%%%%%%%%%%%%%

%calculate velocities :derivatives of the displacement

%with respect to time

vi(1,:) = (cosh(beta(1)*laserillum) - cos(beta(1)*...

laserillum) - (sigma_ff_In(1)*(sinh(beta(1)*...

laserillum) - sin(beta(1)*laserillum)))) * ...

-2*pi*W(1)*sin(2*pi*W(1)*t(count));

vi(2,:) = (cosh(beta(2)*laserillum) - cos(beta(2)*...

laserillum) - (sigma_ff_In(2)*(sinh(beta(2)*...

laserillum) - sin(beta(2)*laserillum)))) * ...

-2*pi*W(2)*sin(2*pi*W(2)*t(count));

vi(3,:) = (cosh(beta(3)*laserillum) - cos(beta(3)*...

laserillum) - (sigma_ff_In(3)*(sinh(beta(3)*...

laserillum) - sin(beta(3)*laserillum)))) * ...

-2*pi*W(3)*sin(2*pi*W(3)*t(count));

vi(4,:) = (cosh(beta(4)*laserillum) - cos(beta(4)*...

laserillum) - (sigma_ff_In(4)*(sinh(beta(4)...

*laserillum) - sin(beta(4)*laserillum)))) * ...

-2*pi*W(4)*sin(2*pi*W(4)*t(count));
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vi(5,:) = (cosh(beta(5)*laserillum) - cos(beta(5)*...

laserillum) - (sigma_ff_In(5)*(sinh(beta(5)...

*laserillum) - sin(beta(5)*laserillum)))) * ...

-2*pi*W(5)*sin(2*pi*W(5)*t(count));

vi(6,:) = (cosh(beta(6)*laserillum) - cos(beta(6)*...

laserillum) - (sigma_ff_In(6)*(sinh(beta(6)...

*laserillum) - sin(beta(6)*laserillum)))) * ...

-2*pi*W(6)*sin(2*pi*W(6)*t(count));

%Vt will give sum of all velocity components along the

%illuminated surface

Vt = sum((sum(vi)).*gau);

%This vector contains all velocities due to surface over time

V(count,:) = Vt;

%set flags to determine which modes exist -

%this will assist in plotting mode shapes in fig(2)

if count == 1

for i = 1:6;

nonzeromode = (find(abs(y(i,:)))>0);

if nonzeromode > 0

modeflag(i) = 1;
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end

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%start plots here%%%%%%%%%%%%

%plot 3-d - current position of cantilever

figure(1);

w = z’*yt; %w to plot canteliver in 3-d

set(gca,’Color’,’k’,’Xcolor’,’w’,’Ycolor’,’w’,’Zcolor’,’w’);

c = w;

%find start position of laser illumination on canteliver

px = find(x > laserillum(1));

%area illuminated by cantilever

c(:,(px(1)-1):(px(1)-1+length(laserillum))) = 1.01;

surf(w,c); %plot cantilever with laser beam

set(gca,’CameraUpVector’,[0 0 1],’View’,[1.5 82],...

’Projection’,’perspective’);

axis([0 length(x) -200 200 -2 2]);

axis off

set(gca,’Color’,’k’,’Xcolor’,’w’,’Ycolor’,’w’,...

’Zcolor’,’w’);

text(0,-100,0,[’Instantaneous Velocity Due to ...

illum area = ’,num2str(Vt),’m/s’],’FontSize’,...

10,’Color’,’w’);

text(0,-150,0,[’time = ’,num2str(t(count)),’s’]...

,’FontSize’,10,’Color’,’w’);
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text(0,-200,0,[’illum area =’,num2str...

(laserillum(1)),’ - ’,num2str(laserillum(length...

(laserillum)))],’FontSize’,10,’Color’,’w’);

title([’.27m Clamped-Clamped Beam - Illuminated ...

by LVS’],’Color’,’w’);

shading interp;

cmap = [copper(255); 1 .1 .1];

colormap(cmap);

%plot all mode shapes in figure(2) - assume max

%number of modes is 6

for i = 1:6

figure(2);

%this loop will prevent us from plotting

%any zero modes

if modeflag(i) == 1

plot(x,y(i,:),’c’);

axis([0 length_beam -1.1 1.1]);

axis on;

hold on;

end

end

%plot sum of all modes shape in figure 2

plot(x,yt,’b’,’LineWidth’,2);

set(gca,’Color’,’k’,’Xcolor’,’w’,’Ycolor’,’w’);

xlabel(’Length of Beam (m)’,’Color’,’w’);

ylabel(’Space’,’Color’,’w’);

E-13



www.manaraa.com

title([’Spatial sum of modes vibrating on Beam’]...

,’Color’,’w’);

%plot laserilluminated area

plot(laserillum,yti,’r’,’LineWidth’,1);

%set(gca,’CameraPosition’,[0 0 0]);

hold off

%display current velocity signal

%plot(t(1:count),V,’g’);

if count > 1

figure(3);

%plots voltage against currently collected data

plot(t(count-1:count),V(count-1:count),’b’,’...

LineWidth’,2);

set(gca,’Color’,’k’,’Xcolor’,’w’,’Ycolor’,’w’);

xlabel(’time (s)’,’Color’,’w’);

ylabel(’Velocity’,’Color’,’w’);

title([’Velocity output from LVS due to illuminated ...

area’],’Color’,’w’);

hold on;

end

%calculate PSD due to current sampled total

%voltage and plot

figure(4);

%set up velocity to take PSD of last nfft
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%sampled points of signal

if length(V) <= nfft

Vps = V;

else

Vps(1) = [];

Vps = [Vps ; V(length(V))];

end

%hanning window of size nfft is used

[Pxx,fx]=psd(Vps,nfft,Fs,nfft,(nfft/2));

psdplot(1000*Pxx,fx,’Hz’);

set(gca,’Color’,’k’,’Xcolor’,’w’,’Ycolor’,...

’w’,’Xlim’,[0 2500]);

%pause button control

checkbutton = get(fig,’userdata’);

if checkbutton == 2

pause;

set(fig,’userdata’,0);

end

drawnow;

%pause;

end

end

%fixes/changes in Version 3 from previous version

%Now uses Gaussian beam to illuminate target

%Target is .27m fixed-fixed beam

E-15



www.manaraa.com

Bibliography

1. Acherekar, M., et al. “Laser Vibration Sensor,” Infrared Technology XIV , SPIE
- vol. 2472 :2–11 (1995).

2. Brehmer, A. “Normal Mode Testing Using A Scanning Laser Doppler Vibrom-
eter,” Proceedings of SPIE: Third International Conference on Vibration Mea-
surement by Laser Techniques:Advances and Applications , 4072 :184–193 (2000).

3. Bucher, I. “Measuring Vibration Spatial Using Continuous Laser Scanning,”
Proceedings of SPIE: Third International Conference on Vibration Measurement
by Laser Techniques:Advances and Applications , 3411 :409–417 (1998).

4. Castellini, P., et al. “Tracking Laser Doppler Vibrometer for Linear Motion: Ap-
plication to a Timing Belt,” Proceedings of SPIE: Third International Confer-
ence on Vibration Measurement by Laser Techniques:Advances and Applications ,
4072 :194–200 (2000).

5. Chen, S., et al. “Damage Detection Using Scanning Laser Vibrometer,” Third
International Conference on Vibration Measurements by Laser Techniques: Ad-
vances and Appplications , SPIE - vol. 3411 :473–484 (1998).

6. Drain, L.E. The Laser Doppler Technique. New York: John Wiley & Sons Ltd,
1980.

7. F., Buell W., et al. “Bayesian Spectrum Analysis for Laser Vibrometry Process-
ing,” Institute for Advanced Physics

8. Gade, S., et al. “Modal Analysis Using a Scanning Laser Doppler Vibrometer,”
Proceedings of IMAC-XX: A Conference on Structural Dynamics , SPIE - vol.
4753 :1015–1019 (2002).

9. Gasper, J.L., et al. “Membrane Vibration Studies Using a Scanning Laser Vi-
brometer,” Proceedings of IMAC-XX: A Conference on Structural Dynamics ,
SPIE - vol. 4753 :1532–1538 (2002).

10. Hamming, R.W. Numerical Methods for Scientists and Engineers, 2nd Ed . On-
tario: Dover Publications, 1973.

11. Hecht, E. Optics . San Francisco: Addison Wesley, 2002.

12. Hlawatsch, F. Time-Frequency Analysis and Synthesis of Linear Signal Spaces .
United States: Kluwer Academic Publishers, 1998.

13. Inman, D.J. Engineering Vibration. Upper Saddle River New Jersey: Prentice
Hall, 1996.

14. J.W., Goodman. Introduction to Fourier Optics . Boston: McGraw-Hill, Inc,
1996.

BIB-1



www.manaraa.com

15. Kachelmyer, A. L., et al. “Ship Identification by Coherent LADAR Vibration
Sensing,” IRIS Active Systems , vol. 1 :379–398 (1992).

16. Kay, S. M. Modern Spectral Estimation. United States: Prentice Hall, 1988.

17. Kranz, W. “Target Classification by Vibration Sensing,” Infrared Technology
XIV , SPIE - vol. 972 :383–387 (1988).

18. Larson, R.E. and B.H. Edwards. Elementary Linear Algebra. United States:
D.C. Heath and Company, 1991.

19. Meirovitch, L. Elements of Vibrationsal Analysis . Mexico: McGraw-Hill, Inc,
1986.

20. Mullis, C.T. and R.A. Roberts. Digital Signal Processing . United States:
Addison-Wesley, 1987.

21. Newland, D. E. Random Vibrations, Spectral Analysis and Wavelet Analysis .
New York: John Willey & Sons, 1993.

22. Pinotti, M., et al. “Cartoid Artery Pulse Wave Measured by a Laser Vibrome-
ter,” Third International Conference on Vibration Measurements by Laser Tech-
niques: Advances and Appplications , SPIE - vol. 3411 :611–616 (July 1998).

23. Polytech. “Laser Doppler Vibrometer User Manual.” User Manual, no date
[2000].

24. Polytech. “Vibrometer University - Laser Vibrometer Basics.”
http://www.polytec.de/cgi-bin/clickgo.cgi, December 2002.

25. Russell, D. “Acoustics and Vibration Animations.”
http://www.kettering.edu/ drussell/Demos/string/Fixed.html, December
2002.

26. Scharf, L.L. Statistical Signal Processing . United States: Addison-Wesley, 1991.

27. Shanmugan, K.S. and A.M. Breippohl. Random Signals: Detection, Estimation
and Data Analysis . New York: John Wiley & Sons, 1988.

28. Stanbridge, A.B., et al. “Modal Testing Using Impact Excitation and a Scan-
ning LDV,” Third International Conference on Vibration Measurements by Laser
Techniques: Advances and Appplications , SPIE - vol. 3411 :348–356 (1998).

29. Stanbridge, A.B., et al. “Continuous-Scan Vibration Measurements on Moving
Components,” Proceedings of IMAC-XX: A Conference on Structural Dynamics ,
SPIE - vol. 4753 :1519–1525 (2002).

30. Strean, R.F., et al. “Global Noise Characteristics of a Laser Doppler Vibtometer
Part I: Theory,” Vibration Measusrements by Laser Techniques: Advances and
Applications , vol. 2868 :2–11 (1996).

BIB-2



www.manaraa.com

31. Tomasini, E. P. “Second International Conference on Vibration Measurements
by Laser Techniques: Advances and Appplications,” SPIE - The International
Soceity for Optical Engineering , vol. 2868 (4):745–808 (July 1996).

32. Verdeyen, J.T. Laser Electronics . Upper Saddle River, New Jersey: Prentice
Hall, 1995.

BIB-3



www.manaraa.com

REPORT DOCUMENTATION PAGE 
Form Approved 
OMB No. 074-0188 

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and 
maintaining the data needed, and completing and reviewing the collection of information.  Send comments regarding this burden estimate or any other aspect of the collection of information, including 
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, 
Suite 1204, Arlington, VA  22202-4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to an penalty for failing to comply with a collection of 
information if it does not display a currently valid OMB control number.   
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 
1. REPORT DATE (DD-MM-YYYY) 

23-03-2002 
2. REPORT TYPE  

Master ’s Thesis 
     

3. DATES COVERED (From – To) 
Jun 2002 – Mar 2003 

5a.  CONTRACT NUMBER 

5b.  GRANT NUMBER 
 

4.  TITLE AND SUBTITLE 
 
 EFFECT OF MULTI-MODE VIBRATION ON SIGNATURE ESTIMATION 
USING A LASER VIBRATION SENSOR  
  
 5c.  PROGRAM ELEMENT NUMBER 

5d.  PROJECT NUMBER 
 
5e.  TASK NUMBER 

6.  AUTHOR(S) 
 
Pepela, Ngoya, Flight Lieutenant, Royal Australian Air Force  
 
 
 5f.  WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S) 
  Air Force Institute of Technology 
 Graduate School of Engineering and Management (AFIT/EN) 
 2950 Hobson Way, Building 640 
 WPAFB OH 45433-7765 

8. PERFORMING ORGANIZATION 
    REPORT NUMBER 
 
     AFIT/GE/ENP/03-02 

10. SPONSOR/MONITOR’S ACRONYM(S) 
 
 

9.  SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
 AFRL 
 Attn:  Mr. Matthew Dierking 
 1865 4th Street PH:  (937)-255-9614 
 WPAFB OH 45433-7765    

11.  SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
       
        APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 

 
13. SUPPLEMENTARY NOTES  
 
 
 
14. ABSTRACT  
 A laser vibration sensor (LVS) can be used to determine the vibrational spectrum of targets such as vehicles using heterodyne laser doppler 
velocimetry.  The vibrational spectra of exterior skin of vehicles are known to have characteristic resonances due to the physical structure driven by 
motors, gears and other moving parts.  Each particular class of vehicle has a unique vibrational spectrum.   
This research shows how a body vibrating in higher order modes has the opportunity to eliminate spectral content of the target’s vibrational 
spectrum while using an LVS to perform spectrum estimation. This is due to roughly equal amounts of laser photons with equal and opposite 
information about the target’s vibrational velocity returning from the body under investigation. This is especially so when observing targets at large 
distances, and the laser spot size has increased to encapsulate higher order modes vibrating at frequencies used for identification purposes. The 
research also contains preliminary investigations into the mitigation of these effects by use of laser scanning, laser pattern intensity changing and 
advanced signal processing techniques.  
15. SUBJECT TERMS 
       Laser Doppler Vibrometer, Laser Vibration Sensor, Laser Vibrations Sensor, Vibrometer, Multi-Mode, Signature Estimation 
 

16. SECURITY CLASSIFICATION OF: 19a.  NAME OF RESPONSIBLE PERSON 
Marciniak, Michael  A.  Lt Col, USAF (ENP) 

a. REPORT 
 

U 

b. ABSTRACT 
 

U 

c. THIS PAGE 
 

U 

17. LIMITATION OF  
     ABSTRACT 
 
 

UU 

18. NUMBER  
      OF 
      PAGES 
 

92 

19b.  TELEPHONE NUMBER (Include area code) 
(937) 255-3636, ext 4529; e-mail:  Michael.Marciniak@afit.edu 

   Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std. Z39-18 

 


	Effect of Multi-Mode Vibration on Signature Estimation Using a Laser Vibration Sensor
	Recommended Citation

	tmp.1605906895.pdf.TYd_i

